
Tutorial 8: Index Buffers & Face Culling

Summary

This tutorial will show you how to use indices to access your geometry data, allowing you to access
a vertex multiple times in one draw call - useful when drawing certain shapes, such as a cube. This
will be demonstrated by generating some terrain, which takes up less space when used with indices.
Additionally, the ability to cull faces is introduced, via determining the winding of the geometric
primitives being sent to the vertex shader.

New Concepts

Indices, Index Buffers, heightmap generation, face culling, triangle winding

Indices

So far in this tutorial series you’ve been drawing fairly simple geometry - triangles and quads. But
what about if you wanted to draw a pyramid?

The pyramid above only has 5 unique vertices (shown as red dots), but if you were to draw it
using GL TRIANGLES, you’d need 18 vertices - 3 for each side, and 6 for the square base. Many
of them would just be identical, which is not very space efficient! Thankfully, OpenGL provides a
mechanism to reference a vertex multiple times in a single draw call - indices! Just like how the arrays
you have been using in your C++ programs can be accessed via an index, OpenGL can access its
Vertex Buffers using an index. So instead of just iterating through a list of vertices from beginning
to end, OpenGL can choose which vertex to draw next using a series of index values.

1



As well as reducing the number of individual vertices required to form mesh geometry, the reduction
in the number of vertices also serves another potential purpose. If we wanted to change the colour
of a vertex of an indexed mesh, we just change a single colour value. However, if we want to change
the colour value of a non-indexed array, we’d have to change potentially many different vertices, one
for each triangle the vertex appears in. Take the pyramid example - the indexed pyramid has only
one ’point’ vertex, while the non-indexed pyramid has four ’point’ vertices - one for each side. So
we’d have to find four vertices to change the colour value of the point, meaning indices are both a
space saver, and a potential time saver, too! There’s one final performance improvement behind using
indices - cache coherency. Modern graphics processing hardware generally has a vertex cache before
the vertex shader stage, to cache the vertex attributes coming from a VBO, and one after, to store the
results of the vertex processing. If a mesh uses indices rather than duplicates, each vertex is therefore
more likely to be in either the pre or post vertex cache, and so will be processed quicker.

Index Buffers

So, indices are quicker, more convenient, and smaller. But how much smaller? In order to use indices,
OpenGL needs an Index Buffer loaded into graphics memory, just like the Vertex Buffers you are
accustomed to. This is a list of bytes, unsigned shorts or integers that tell OpenGL which vertex in
the currently bound VBOs to draw next. So, in our pyramid example, instead of needing space for
18 vertices, we only need space for 5 vertices, and 18 indices, instead. If each vertex had a position
(12 bytes), colour (16 bytes), and texture coordinate (8 bytes), that’d be 36 bytes per vertex, for a
total of 648 bytes for the entire pyramid. If we stored the indices as shorts (2 bytes), we’d only need
180 bytes for the vertices, and 36 bytes for the indices, for a total of 216 bytes. Although these are
still small amounts, you should be able to see how the savings can build up when using multiple, high
polygon meshes - like the one you’ll be making in the example program!

Face Culling

Up until now, these tutorials have used simple geometry - a single triangle, or a small number of tris to
make up a cube. In the example program for this tutorial, however, we’re going to be generating a lot
of triangles, so now seems a good time to introduce yet another potential performance enhancement
- face culling. Even with the frustum culling and early-z depth testing concept introduced earlier in
the seriesl, you might still end up wasting vertex processing on vertices that will never be seen in the
final image - those that get covered by other vertices in the same mesh. Think about a closed mesh
like a cube - although it has 6 sides, no matter how you orient it, you’ll never see more than 3 of the
cube’s sides; in rendering terms, the faces further away from the viewpoint get wholly covered over
by the closer ones, or to think of it another way, only the faces actually facing towards the camera
are visible.

So far, we haven’t really paid any attention to the ordering of the vertices that make up the tri-
angles in our scenes. This ordering, known as its winding, can be either clockwise, or anticlockwise.
To demonstrate this, here’s the triangle we made back in tutorial 1:

If the vertices were defined in clockwise order, we’d get the triangle abc, and if they were defined
anticlockwise, we’d get acb. Depending on the exact implementation of your graphics hardware drivers,
this winding will be used in one of two ways to determine whether a polygon faces the screen or not.

One way is to take the dot product of the triangle normal vector and the direction vector between
the camera viewpoint and the current vertex - if the dot product is less than zero, the current triangle
is facing away from the screen, and can be culled.

2



Dot Product Method of Determining Facet Direction: Left to Right: Facing, Not Facing, Edge Case

This normal can be determined by taking the Cross Product of the vectors (c-a) and (b-a) - you’ll
learn more about how to generate normals and how to do cross products later in the tutorial series,
but for now know that the cross product of (c-a) and (b-a) is the opposite of the normal formed by
the cross product of (b-a) and (c-a), so the normals between a clockwise and anticlockwise winding
are flipped:

The surface normals created by anticlockwise, and clockwise vertex ordering, respectively

The second method is to take the signed area of the polygons as they appear on screen - so after
they have been transformed to their final screen space coordinates. For a triangle, this signed area
can be calculated from its 2D screen coordinates as follows:

area = 1
2 (axby − bxay) + (bxcy − cxby)

Again, depending on the order of the vertices in the triangle, we get opposite values that can be
tested against - in this case, triangles with signed areas less than 0 are culled:

area of triangle acb = −0.25 = 1
2 (0 · −0.5 − 0.5 · 0.5) + (0.5 · −0.5 −−0.5 · −0.5)

area of triangle abc = 0.25 = 1
2 (0 · −0.5 −−0.5 · 0.5) + (−0.5 · 0.5 − 0.5 · −0.5)

Face culling does place some limitations on the meshes used. Flat geometry, like the triangle and
quad we’ved used as mesh geometry so far, will get back face culled if the camera goes behind them,
and with no geometry to hide this (as in the cube example) they will simply disappear. It works
best with ’closed’ geometry where there is always front facing facets to cover the back facing ones.
Although OpenGL defaults to using anticlockwise triangle definition, as with most other operations,
face culling is programmable - whether to cull front, back or even both faces, whether it is clockwise or
anticlockwise winding that determines the face normal direction, and so on. It’s also worth pointing
out that this only counts for opaque objects; if they are transparent, you might actually want to
temporarily disable face culling to render them correctly - yet another reason why transparent objects
are a pain to deal with in rasterised graphics.

3



Example Program

To better demonstrate the benefits of index buffers, we’re going to draw something new - a 3D
landscape! If we use a simple algorithm to create a 2D grid of triangles, and then set their height to
different values, we can create a basic, but quite effective landscape:

Left: A flat grid of triangles. Right: The same grid, with vertex heights adjusted to create a landscape

The landscape we’re going to create will have 66,049 unique vertices, but 393,216 indices - imagine
if all those indices had to be a separate vertex! Told you using indices would add up to big savings
in memory. To get decent looking height values, we’re going to load in the data from a heightmap -
a simple file containing 257*257 unsigned chars, generated by a heightmap generation tool called
TerraGen.

Mesh Class

Before we get to the heightmap generation, we must modify our Mesh class to support index buffers.
To start off with, in order to automatically create an index array slot in our VBO array, we have to
modify the Mesh class MeshBuffer enum, to include an additional named constant, INDEX BUFFER.
Remember to put it before MAX BUFFER! Also, we need two new protected member variables in
our Mesh class - an unsigned int to store the number of indices in the mesh, and a pointer to the
index data itself.

1 enum MeshBuffer {

2 VERTEX_BUFFER ,COLOUR_BUFFER ,

3 TEXTURE_BUFFER ,INDEX_BUFFER ,

4 MAX_BUFFER

5 };

6 ...//Dots mean ’keep existing contents of this class!’

7 protected:

8 GLuint numIndices;

9 unsigned int* indices;

10 ...

Mesh.h

Obviously, as we have new member variables, we must initialise them in our constructor, and
delete the pointer in the destructor.

1 Mesh::Mesh(void) {

2 ... //Dots mean ’keep existing contents of this function!’

3 indices = NULL;

4 numIndices = 0;

5 ...

Mesh.cpp

4



6 Mesh ::~ Mesh(void) {

7 ...

8 delete [] indices;

9 ...

10 }

Mesh.cpp

Just as we modified the BufferData function when we introduced texturing into our rendering capa-
bilities, we must also do so to use indices. So, we generate an index buffer if the mesh has indices, and
buffer data to it much the same way as we do for colours and positions. Note, that instead of being of
type GL ARRAY BUFFER, our index buffer is of type GL ELEMENT ARRAY BUFFER,
and instead of the array size being calculated using numVertices, it is done so using numIndices.

11 void Mesh:: BufferData () {

12 ...

13 if(indices) {

14 glGenBuffers (1, &bufferObject[INDEX_BUFFER ]);

15 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER ,

16 bufferObject[INDEX_BUFFER ]);

17 glBufferData(GL_ELEMENT_ARRAY_BUFFER , numIndices*sizeof(GLuint),

18 indices , GL_STATIC_DRAW );

19 }

20 ...

Mesh.cpp

The final change to the Mesh class is to the Draw function. Depending on whether you are ren-
dering a direct list of vertices, or an indexed array of vertex elements, there are two slightly different
OpenGL commands. So, we have an if statement to choose between them, which checks for indices
by looking for a non-zero value in the INDEX BUFFER slot in the bufferObject array. If there’s no
indices, we use glDrawArrays, just as we did back in tutorial 1. If there are indices, we use the new
OpenGL function glDrawElements, which takes 4 parameters - the type, the number of indices to
draw, the size of each index, and a pointer to some index data. This last parameter is a bit of legacy
functionality from OpenGL 2.x, when geometry data could be in system memory, and so should be
kept at 0.

21 void Mesh::Draw() {

22 ...

23 glBindVertexArray(arrayObject );

24 if(bufferObject[INDEX_BUFFER ]) {

25 glDrawElements(type , numIndices , GL_UNSIGNED_INT , 0);

26 }

27 else{

28 glDrawArrays(type , 0, numVertices );

29 }

30 glBindVertexArray (0);

31 ...

32 }

Mesh.cpp

HeightMap Class

Now we have a Mesh class that can make use of indices, let’s do something interesting! In your nclgl
project, make a new Subclass of Mesh, called HeightMap. This class will create some terrain, using
indices to cut down on the number of vertices in memory.

5



Header file

The header file doesn’t contain too much. We’ll be loading in the heightmap data from a file, so we
must have the relevant includes. We also have some defines, which will be explained as they are used
in the Class file. Note how the constructor takes in a file name as a string.

1 #pragma once

2

3 #include <string >

4 #include <iostream >

5 #include <fstream >

6

7 #include ".\ nclgl\mesh.h"

8

9 #define RAW_WIDTH 257

10 #define RAW_HEIGHT 257

11

12 #define HEIGHTMAP_X 16.0f

13 #define HEIGHTMAP_Z 16.0f

14 #define HEIGHTMAP_Y 1.25f

15 #define HEIGHTMAP_TEX_X 1.0f / 16.0f

16 #define HEIGHTMAP_TEX_Z 1.0f / 16.0f

17

18 class HeightMap : public Mesh {

19 public:

20 HeightMap(std:: string name);

21 ~HeightMap(void ){};

22 };

HeightMap.cpp

Class file

We only have one major function in the HeightMap class, and that is its constructor. It starts off
by creating a new file handle, using the string passed to it as a funciton parameter. This file will
contain the actual heightmap data. Assuming it has successfully opened, we then set the correct
number of vertices and indices for the mesh that will result from the heightmap. The heightmaps
created by TerraGen are an array of 257 by 257 unsigned chars, represented by the RAW WIDTH
and RAW HEIGHT defines from the header file. 257 values in each dimension is enough to create a
grid of 256 by 256 square patches, with each patch made up of two triangles, each of which requiring 3
indices to be rendered. We also initialise the vertices, textureCoords, and indices pointers to memory
locations large enough for the vertex and index data we are about to create.

23 #include "HeightMap.h"

24

25 HeightMap :: HeightMap(std:: string name) {

26 std:: ifstream file(name.c_str(), ios:: binary );

27 if(!file) {

28 return;

29 }

30 numVertices = RAW_WIDTH*RAW_HEIGHT;

31 numIndices = (RAW_WIDTH -1)*( RAW_HEIGHT -1)*6;

32 vertices = new Vector3[numVertices ];

33 textureCoords = new Vector2[numVertices ];

34 indices = new GLuint[numIndices ];

HeightMap.cpp

6



We then read in the file data into a temporary memory location, appropriately enough called data.
This data is simply a y-axis height value between 0 and 255, with the x and z axis’ inferred by the
position in the data array. So, to turn it into data suitable for transferral to graphics memory, we use a
nested for loop, to transform the height data into Vector3s. Note how we scale the height and position
data by the defines in the header file - we could make HEIGHTMAP Y a larger value to make the
terrain more rocky, for example. Once we exit the loops, we don’t need data any more, so we delete it.

35 unsigned char*data = new unsigned char[numVertices ];

36 file.read((char*)data ,numVertices*sizeof(unsigned char ));

37 file.close ();

38

39 for(int x = 0; x < RAW_WIDTH; ++x) {

40 for(int z = 0; z < RAW_HEIGHT; ++z) {

41 int offset = (x * RAW_WIDTH) + z;

42

43 vertices[offset] = Vector3(

44 x * HEIGHTMAP_X ,data[offset] * HEIGHTMAP_Y ,z * HEIGHTMAP_Z );

45

46 textureCoords[offset] = Vector2(

47 x * HEIGHTMAP_TEX_X , z * HEIGHTMAP_TEX_Z );

48 }

49 }

50

51 delete data;

HeightMap.cpp

We now have our vertices in system memory, but we still need to create our indices. We do this
using another nested for loop. We want to create 256 by 256 square ’patches’, each of which is made
up out of 2 triangles. So, we create a for loop which creates each of these patches in turn, generating
the indices that will draw their respective triangles. You should be able to see how using indices saves
memory - we’re reusing vertices a and c in each patch, but instead of having to make a duplicate copy
of the vertices’ attribute data, we just write another index. As with the GenerateTriangle function we
wrote back in tutorial 1, we finish our geometry definition with a call to the newly modified BufferData
function, which will now upload both the vertex and index data to the graphics card.

52 numIndices = 0;

53

54 for(int x = 0; x < RAW_WIDTH -1; ++x) {

55 for(int z = 0; z < RAW_HEIGHT -1; ++z) {

56 int a = (x * (RAW_WIDTH )) + z;

57 int b = ((x+1) * (RAW_WIDTH )) + z;

58 int c = ((x+1) * (RAW_WIDTH )) + (z+1);

59 int d = (x * (RAW_WIDTH )) + (z+1);

60

61 indices[numIndices ++] = c;

62 indices[numIndices ++] = b;

63 indices[numIndices ++] = a;

64

65 indices[numIndices ++] = a;

66 indices[numIndices ++] = d;

67 indices[numIndices ++] = c;

68 }

69 }

70

71 BufferData ();

72 }

HeightMap.cpp

7



Renderer header file

Not much new in our Renderer class, this time around. Note how we include the new HeightMap class
header file, and have a pointer to a HeightMap as a protected member variable.

1 #pragma once

2

3 #include "./ nclgl/OGLRenderer.h"

4 #include "./ nclgl/camera.h"

5 #include "./ nclgl/HeightMap.h"

6

7 class Renderer : public OGLRenderer {

8 public:

9 Renderer(Window &parent );

10 virtual ~Renderer(void);

11

12 virtual void RenderScene ();

13 virtual void UpdateScene(float msec);

14

15 protected:

16 HeightMap* heightMap;

17 Camera* camera;

18 };

renderer.h

Renderer Class file

The actual Renderer class for this tutorial is nothing new, as all of the new functionality is contained
in the Mesh class. We create a new HeightMap and Camera, and create the same shader program
we used back in the texturing tutorial. We want our terrain to be textured, so we set it to an earthy
texture on line 14, and on line 21 we set it to repeat, using the SetTextureRepeating function we made
back in tutorial 3. We also set a perspective projection matrix, using a farZ value of 10,000, so that
we can see all of the terrain at once. Finally, we enable depth testing, and set init to true.

1 #include "Renderer.h"

2

3 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

4 heightMap = new HeightMap(TEXTUREDIR"terrain.raw");

5 camera = new Camera (-40,270, Vector3 ( -2100 ,3300 ,2000));

6

7 currentShader = new Shader(SHADERDIR"TexturedVertex.glsl",

8 SHADERDIR"TexturedFragment.glsl");

9

10 if(! currentShader ->LinkProgram ()) {

11 return;

12 }

13

14 heightMap ->SetTexture(SOIL_load_OGL_texture(

15 TEXTUREDIR"Barren Reds.JPG",

16 SOIL_LOAD_AUTO , SOIL_CREATE_NEW_ID , SOIL_FLAG_MIPMAPS ));

17

18 if(!heightMap ->GetTexture ()) {

19 return;

20 }

21 SetTextureRepeating(heightMap ->GetTexture (),true);

22

8



23 projMatrix = Matrix4 :: Perspective (1.0f ,10000.0f,

24 (float)width/( float)height ,45.0f);

25

26 glEnable(GL_DEPTH_TEST );

27 glEnable(GL_CULL_FACE );

28 glCullFace(GL_BACK );

29

30 init = true;

31 }

renderer.cpp

You’ll also see a new pair of OpenGL functions - a glEnable call on line 27 using the symbolic
constant GL CULL FACE, which turns on face culling, and glCullFace on line 28, which selects
whether to cull front or back facing polygons. We usually want back facing polygons to be culled, so
the symbolic constant GL BACK is used.

Our destructor simply deletes the heightMap and camera variables, while UpdateScene updates
the camera and forms a new view matrix.

32 Renderer ::~ Renderer(void) {

33 delete heightMap;

34 delete camera;

35 }

36

37 void Renderer :: UpdateScene(float msec) {

38 camera ->UpdateCamera(msec);

39 viewMatrix = camera ->BuildViewMatrix ();

40 }

renderer.cpp

RenderScene enables the texturing shader, updates its matrices and texture sampler, then draws
the heightmap. The changes we made to the Mesh class handles everything we need to in regard to
index buffers, so the rest of our program doesn’t need to know whether the geometry we are rendering
is indexed or not. It’s generally good programming practice to try and reduce the ’footprint’ of a new
feature in this way, and not being able to ’hide’ the details of a new feature is generally a symptom
of poor software design somewhere along the way.

41 void Renderer :: RenderScene () {

42 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

43

44 glUseProgram(currentShader ->GetProgram ());

45 UpdateShaderMatrices ();

46

47 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

48 "diffuseTex"), 0);

49

50 heightMap ->Draw ();

51

52 glUseProgram (0);

53 SwapBuffers ();

54 }

renderer.cpp

9



Main file

Our main file is also nothing new! It’s the same as the main file we used in the view matrix tutorial.

1 #include "./ nclgl/window.h"

2 #include "Renderer.h"

3

4 #pragma comment(lib , "nclgl.lib")

5

6 int main() {

7 Window w("Index Buffers!", 800,600, false);

8 if(!w.HasInitialised ()) {

9 return -1;

10 }

11

12 Renderer renderer(w);

13 if(! renderer.HasInitialised ()) {

14 return -1;

15 }

16

17 w.LockMouseToWindow(true);

18 w.ShowOSPointer(false);

19

20 while(w.UpdateWindow () &&

21 !Window :: GetKeyboard()->KeyDown(KEYBOARD_ESCAPE )){

22 renderer.UpdateScene(w.GetTimer()->GetTimedMS ());

23 renderer.RenderScene ();

24 }

25 return 0;

26 }

main.cpp

Tutorial Summary

If you run the program, you should be able to see your new heightmap terrain, and fly around it using
your camera controls. It’s pretty basic, but looks better than the triangles you’ve been using up to
now! More importantly, it has shown you how to use indices when rendering geometry. Not every
mesh is suitable for being rendered using indices, but for those that are, they provide an effective
means of reducing the memory footprint of your geometry data. You’ve also had a quick look at face
culling, a simple and effective way of reducing the number of vertices processed in a draw call.

Further Work

1) In this tutorial you used the default Mesh geometry draw type - GL TRIANGLES. What other
geometry types can be rendered using indices? Which geometry type would be unsuitable for indices?

2) Suppose you wanted to use GL TRIANGLE STRIP as the geometry draw type for your
heightmap - how would you achieve that? Investigate what a degenerate triangle is in relation to
geometry rendering.

3) Try making your landscape look a little more realistic by creating some ’fake’ shadows. Add
colour data to your mesh geometry, by ranging from white to black, determined by the vertices’
height. Or maybe add snow to high peaks using colours?

4) Can you use indices to draw a textured cube using only 8 vertices? Why / why not?

10


